# MIDTERM EXAMINATION Spring 2009 MTH101- Calculus And Analytical Geometry (Session - 6) Time: 60 min Marks: 40 **Calculus & Analytical Geometry-1** Gulshan Ali (Hafizabad) qulshanvu@yahoo.com Question No: 1 (Marks: 1) - Please choose one The set {...,-4,-3,-2,-1,0,1,2,3,4,...} is know as set of ............ ► Natural numbers ▶ Integers ▶ Whole numbers ► None of these Please choose one Question No: 2 (Marks: 1) $_{-}$ The h(x) =domain of the function is

 $(-\infty,2)\cup(2,4)\cup(4,+\infty)$ 

 $(-\infty,2)$  (+2,4)  $(4,\infty)$ 

 $(-\infty, 2.5) \cup (2.5, 4.5) \cup (4.5, \infty)$ 

All of these are incorrect

Question No: 3 (Marks: 1) - Please choose one

 $\lim_{x \to a} f(x) = L$  then the inequality  $(L - \varepsilon) < f(x) < L + \varepsilon$ the

$$(L-\varepsilon) < f(x) < L+\varepsilon$$

holds in any subset of the

Ιf

interval

$$(a-\delta,a)\cup(a,a+\delta)$$

$$(a-1,a) \cup (a,a+1)$$

$$(a-\varepsilon,a)\cup(a,a+\varepsilon)$$

Question No: 4 (Marks: 1) - Please choose one

 $L - \varepsilon < f(x) < L + \varepsilon$ 

Can be written as

$$|f(x)-L|>\varepsilon$$

$$|f(x)-L|<\varepsilon+1$$

▶ None of these

Question No: 5 (Marks: 1) **√Please choose one** 

a function satisfies the conditions

f(c) is defined

$$\lim_{x\to a^+} f(x)$$

Exists

$$\lim_{x \to c^+} f(x) = f(c)$$

Then the function is said to be

- Continuous at c
- ► Continuous from left at c
- ► Continuous from right at c

If

► None of these

### Question No: 6 (Marks: 1) - Please choose one

$$\frac{d}{dx}[sex] = ----$$



$$\frac{-\sin x}{1-\sin^2 x}$$

▶

$$\frac{1}{1-\sin^2 x}$$

**•** 

► None of these

## Question No: 7 (Marks: 1) - Please choose one

 $\log_b ac = ----$ 

## $\log_b a + \log_b c$

$$\log_a b + \log_c b$$

$$\log_{a+c} b$$

► None of these

## Question No: 8 (Marks: 1) - Please choose one

$$a\log_{h}r$$

 $\log_b a$ 

 $r\log_b a$ 

| $b \log_a r$                                                                                    |                     |                            |                           |             |
|-------------------------------------------------------------------------------------------------|---------------------|----------------------------|---------------------------|-------------|
| ► None of thes                                                                                  | е                   |                            | (                         |             |
| Question No: 9 (                                                                                | Marks: 1)           | - Please choose on         | ie                        | If          |
| f''(x) < 0 on an oper                                                                           | ı interval (a,b)    | then f is                  | - on (a,b )               | <b></b>     |
| <ul><li>None of thes</li><li>Concave up</li><li>Concave dow</li><li>Closed</li></ul>            |                     |                            |                           | >           |
| Question No: 10                                                                                 | ( Marks: 1 )        | - Please choose o          | $\sim$                    | Ιf          |
| f is a twice differer                                                                           | 36                  | n at a stationary point    | $x_0 \qquad f''(x_0) > 0$ | 0<br>then f |
| has relative                                                                                    | At                  |                            |                           |             |
| <ul><li>▶ Minima</li><li>▶ Maxima</li><li>▶ None of thes</li></ul> Question No: 11              |                     | - Rlease choose o          | one                       |             |
| line is called a tange                                                                          | nt line to the c    | circle if it meets the cir | rcle at precisely         | A           |
| <ul> <li>One point</li> <li>Two points</li> <li>Infinite point</li> <li>None of thes</li> </ul> | s                   |                            | ,                         |             |
| Question No: 12                                                                                 | ( Marks: 1 )        | - Please choose o          | ne                        |             |
| The equation radius $(-4,1),\sqrt{6}$ $(-4,1),6$                                                | $-4)^2 + (y-1)^2 =$ | 6 represents a circle      | having center at          | and         |

|     |      |       |     | _  |
|-----|------|-------|-----|----|
| /   | -4,- | 1\    |     | 1- |
| ( – | -4 - | — I I | 4.1 | h  |
| (   | т,   | 1,    | , V | v  |

► None of these

#### Question No: 13 (Marks: 1) - Please choose one

 $\lim_{x \to a} f(x) \text{ where } f(x) = k$ 

(k is a constant) is equal to

- ► k+2
- ▶ k+1
- ► k
- ▶ kf

### Question No: 14 (Marks: 1) - Please choose one

For

The

any polynomial

$$\lim_{n \to \infty} P(x) = c_0 + c_1 a + \dots + c_n a^n =$$

 $P(x) = c_0 + c_1 x + \dots + c_n x^n$  and any real number a

ightharpoonup P(a)

$$P(a+1)$$

P(a-1)

$$\frac{1}{P(a)}$$

## Question No: 15 (Marks: 1) - Please choose one

Polynomials are always ..... Function

- ▶ Continuous
- ► Discontinuous

Question No: 16 (Marks: 1) - Please choose one

$$\frac{D}{Dx}[dh(x)] = -$$

where d is a constant

dh(x)



- **▶** (
- ► None of these

Question No: 17 (Marks: 1) - Please choose one

graph  $x = y^2$  is symmetric about

- ➤ X-axis
- ➤ Y-axis
- ► Origin
- ► None of these

Question No: 18 (Marks: 1) - Please choose one

 $f(x) = 3\sqrt{x}$  and  $g(x) = \sqrt{x}$ 

Consider two function

$$f(x).g(x) = 3x$$

$$f(x)/g(x) = 3x$$

$$f(g(x)) = 3x$$

► None of these

Question No: 19 (Marks: 1) - Please choose one

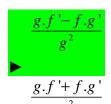
 $\lim_{h\to 0} \frac{f(x+h)-f(x)}{h}$ 

formula

is called ..... with respect to x of the function f

what is true about these functions

The


\_ The

- Derivative
- ► Slope
- ► Tangent
- ► None of these

#### Question No: 20 (Marks: 1) - Please choose one

 $\frac{d}{dx}(\frac{f}{g})$ 

Suppose that  $\int and g$  are differentiable function of x then



$$\underbrace{g.f'-f.g}_{g}$$

None of these



Question No: 21 (Marks: 2)

 $\frac{dy}{dx} = -\frac{3yx^2 + 1}{28y^3 + x^3}$ 

then find the slope of the tangent line at the point (2, 0).

Question No: 22 (Marks: 3/)

Let  $f(x) = \begin{cases} \frac{x^2 - x - 2}{x + 1} & \text{if } x \neq 1 \\ -3 & \text{if } x = -1 \end{cases}$ 

At what points the function is continuous and discontinuous? At point of discontinuity if any explain why it is discontinuous?

Question No. 23 (Marks: 5)

 $y = \sqrt{x^2 + 1}$ 

Differentiate w.r.t. x by chain rule

Question No: 24 (Marks: 10)

Evaluate the following limit.

